Harmonic Analysis on Finite Groups - Representation Theory, Gelfand Pairs and Markov Chains.pdf

Harmonic Analysis on Finite Groups - Representation Theory, Gelfand Pairs and Markov Chains PDF

Tullio Ceccherini-silberstein

Line up a deck of 52 cards on a table. Randomly choose two cards and switch them. How many switches are needed in order to mix up the deck ? Starting from a few concrete problems such as the random walk on the discrete circle and the Ehrenfest diffusion model, this book develops the necessary tools for the asymptotic analysis of these processes. This detailed study culminates with the case-by-case analysis of the cut-off phenomenon discovered by Persi Diaconis. This self-contained text is ideal for students and researchers working in the areas of representation theory, group theory, harmonic analysis and Markov chains. Its topics range from the basic theory needed for students new to this area, to advanced topics such as Gelfand pairs, harmonics on posers and the q-analogs, the complete analysis of the random matchings, and a presentation of the representation theory of the symmetric group.

Harmonic Analysis on Finite Groups Representation Theory, Gelfand Pairs and Markov Chains (Cambridge Studies in Advanced Mathematics) by Tullio Ceccherini-Silberstein; Fabio Scarabotti; Filippo Tolli ISBN 13: 9780521883368 ISBN 10: 0521883369 Harmonic Analysis On Finite Groups, Tullio …

8.57 MB Taille du fichier
9780521883368 ISBN
Harmonic Analysis on Finite Groups - Representation Theory, Gelfand Pairs and Markov Chains.pdf

Technik

PC et Mac

Lisez l'eBook immédiatement après l'avoir téléchargé via "Lire maintenant" dans votre navigateur ou avec le logiciel de lecture gratuit Adobe Digital Editions.

iOS & Android

Pour tablettes et smartphones: notre application de lecture tolino gratuite

eBook Reader

Téléchargez l'eBook directement sur le lecteur dans la boutique www.jeuxdeben10.fr ou transférez-le avec le logiciel gratuit Sony READER FOR PC / Mac ou Adobe Digital Editions.

Reader

Après la synchronisation automatique, ouvrez le livre électronique sur le lecteur ou transférez-le manuellement sur votre appareil tolino à l'aide du logiciel gratuit Adobe Digital Editions.

Notes actuelles

avatar
Sofya Voigtuh

Daniel Fleisch / Witte - yurinsha.com Harmonic Analysis on Finite Groups Representation Theory, Gelfand Pairs and Markov Chains. Series: Cambridge Studies in Advanced Mathematics (No. 108) Hardback (ISBN-13: 9780521883368) Line up a deck of 52 cards on a table. Randomly choose two cards and switch them. How many switches are needed in order to mix up the deck? Starting from a few concrete problems such as random walks on …

avatar
Mattio Müllers

Buy Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains (Cambridge Studies in Advanced Mathematics) on Amazon.com FREE SHIPPING on qualified orders

avatar
Noels Schulzen

Noté /5. Retrouvez Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains et des millions de livres en stock sur Amazon.fr. Achetez neuf ou d'occasion Harmonic analysis on finite groups: representation …

avatar
Jason Leghmann

Noté /5. Retrouvez Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains et des millions de livres en stock sur Amazon.fr. Achetez neuf ou d'occasion Harmonic analysis on finite groups: representation …

avatar
Jessica Kolhmann

15 nov 2015 ... Theory, Random Walks and Harmonic Analysis” Cortona (Italy) June 13-18 2004. ... Title of the dissertation: Gelfand Pairs: From Self-Similar Groups to Markov Chains Universit`a ... to the Representation Theory of the Symmetric Groups. ... 2012: (Summer Quarter) Course MATH 2 (Finite Mathematics). On the relation of some combinatorial functions to representation theory (with N.V.Tsilevich). ... Classification of finite metric spaces and combinatorics of convex polytopes. ... Poisson-Furstenberg boundary of the braid groups and Markov-Ivanovsky ... Gelfand-Tsetlin algebras, expectations, inverse limits, Fourier analysis.